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Quaternionic Electron Theory: Dirac’s Equation

Stefano De Leo1,2 and Waldyr A. Rodrigues, Jr.2
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We perform a one-dimensional complexified quaternionic version of the Dirac
equation based on i-complex geometry. The problem of the missing complex
parameters in quaternionic quantum mechanics with i-complex geometry is
overcome by a nice ª trickº which allows us to avoid the Dirac algebra constraints
in formulating our relativistic equation. A brief comparison with other
quaternionic formulations is also presented.

1. INTRODUCTION

Following the fundamental work of Finkelstein et al. (1962, 1963) on

quaternionic quantum mechanics and gauge theories, a renewed and increas-
ing interest has recently appeared (Adler, 1994a, b, 1995, 1996; Razon and

Horwitz, 1991a, b, 1992; Horwitz, 1993, 1994a, b; de Witt and Van Proyen,

1992, 1994; De Leo and Rotelli, 1995a, b; De Leo, 1995, 1996c) the use of

noncommutative fields to formulate physical theories. In a review paper (De

Leo and Rodrigues, 1997) we showed that is possible to give a consistent

version of quantum mechanics by using real and complexified quaternions
as underlying mathematical structure and by adopting a ª complexº geometry

(Rembielinski, 1978; Horwitz and Biedenharn, 1984). We mentioned there

the possibility to obtain a natural formulation of the Dirac equation within

a complexified quaternionic quantum mechanics with i-complex geometry.

In the present article, overcoming the problem of the ª apparentº missing

complex parameters, we formulate a quaternionic version of the Dirac equa-
tion which appears to be more attractive than the ones given in the literature
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(Rotelli, 1989; De Leo, 1996b). Negative-energy solutions are quickly

obtained from positive-energy solutions simply by multiplying the latter by

the ª complexº imaginary unit i . The spin flip is related to multiplication by
the quaternionic imaginary unit j. The CPT operation maps the spinor field

C into its dual space: parity and time reversal are characterized by the

ª complexº involution, charge conjugation by multiplication by ª complexº

( i ) and quaternionic ( j ) imaginary units.

The power of this new formulation of the Dirac equation is also evident

when we take its nonrelativistic limit. The one-dimensional complexified
quaternionic Dirac equation is obviously not reducible in its dimensions by

performing the nonrelativistic limit, contrary to what happens in the real

quaternionic (2 ® 1) and complex (4 ® 2) case (Table I). In discussing the

nonrelativistic SchroÈ dinger equation we find in its real quaternionic formula-

tion a belated theoretical discovery of spin (De Leo and Rotelli, 1992);

working with complexified quaternions we prefer talking of a belated theoreti-
cal discovery of the positron. It is worth mentioning that the nonrelativistic

SchroÈ dinger approximation to the Dirac equation formulated with the Clifford

algebra Cl1,3 shows also that spin is present in the SchroÈ dinger theory, but

is ª frozen.º

In the literature we find two different quaternionic formulations of the
Dirac equation, with complex geometry, which reproduce the standard results.

The first one, performed in 1989 (Rotelli, 1989), is obtained by 2 3 2 real

quaternionic matrices; the second one, dated 1996 (De Leo, 1996b), over-

comes previous difficulties, i.e., nonphysical doubling of solutions (Edmonds,

1972, 1984; Gough, 1986, 1987, 1989) and allows a one-dimensional com-

plexified quaternionic representation of the Dirac algebra and consequently
a one-dimensional version of the Dirac equation. These formulations, notwith-

standing the reduced dimensions of the spinors, reproduce the standard results

thanks to the doubling (real quaternions) and quadrupling (complexified

quaternions) of solutions due to complex geometries (De Leo and Rodrigues,

1997). Nevertheless, we do not have serious reasons for preferring quaterni-

onic to complex formulations. The only apparent advantage in using complexi-
fied quaternions is given by the possibility to translate back the one-

Table I

Equation matrix dimensions Number of solutions

Numerical field Dirac SchroÈ dinger±Pauli SchroÈ dinger SchroÈ dinger

Complex 4 2 1 1

Real quaternions 2 1 1 2

Complexified quaternions 1 1 1 4
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dimensional complexified quaternionic Dirac equation into a new equivalent

complex equation, performed by the Pauli algebra and so by 2 3 2 complex

matrices. At first glance, this would appear very strange because of the 4-
dimensionality requested for the g -matrices. Nevertheless, we can reobtain

the right complex parameter counting by allowing a left/right action of two-

dimensional matrices. By passing from complex to complexified quaternions

we show that the standard Dirac equation, written in the standard formalism

by using the Clifford algebra Cl4,1, can be rewritten by using the Clifford

algebra Cl3,0 (Zeni, 1994), called the Pauli algebra. In spite of this, we must
admit a not elegant version of the Dirac equation by complexified quaternions

and i -complex geometry (De Leo, 1996b). Our aim in this paper is to present

a complexified quaternionic formulation of the Dirac equation where the

noncommutativity of the quaternionic field represents an advantage and not
an undesired and useless complication.

This work is structured as follows: After a mathematical introduction
to the complexified quaternionic algebra in Section 2, in Section 3 we briefly

recall the quaternionic formulations of the electron theory found in the litera-

ture. The new complexified quaternionic version of the Dirac equation is

given in Section 4. We discuss the CPT operation in Section 5 and give our

conclusions in the last section.

2. COMPLEXIFIED QUATERNIONIC ALGEBRA

In this section, we introduce the complexified quaternionic algebra and

the so-called ª barredº operators. For a complete review of the quaternionic

mathematical language used in this paper see De Leo and Rodrigues (1997).
The complexified quaternionic algebra is a quaternionic algebra,

*(1,
-

h ), over a complex field, # (1, i ),

*c 5 {c0 1
-

h ?
-

c ,
-

h [ (i, j, k),
-

c [ (c1, c2, c3), c0,1,2,3 P #(1, i )} (1)

with the operation of multiplication defined according to the following rules

for the imaginary units:

i 2 5 2 1

i 2 5 j 2 5 k 2 5 2 1

ijk 5 2 1

[ i
-

h ] 5 0

Working with complexified quaternions, we have three different (independent)

opportunities to define conjugation operations
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q x
c 5 c *0 1

-
h ?

-
c*

q *c 5 c0 2
-

h ?
-

c

q ²
c 5 c *0 2

-
h ?

-
c*

where * indicates the standard complex conjugation ( i ® 2 i ). Note that

q ²
c 5 q x*

c 5 q*x
c . The x involution is an automorphism, (qcpc)

x 5 q x
cp x

c, while

the * and ² conjugations are antiautomorphisms, that is (qc pc)* 5 p*c q*c and

(qc pc)
² 5 p ²

cq
²
c.

Due to the noncommutative nature of the quaternionic multiplication,

we must distinguish between the left and right action of our imaginary units

i, j, k. We introduce barred operators to represent the right action of the

three quaternionic imaginary units. Explicitly,

1 | i, 1 | j, 1 | k

will identify the right multiplication of i, j, k and so

(1 |
-

h ) qc [ qc

-
h

In this formalism, the most general transformation on complexified

quaternions will be given by

qc 1 pc | i 1 rc | j 1 sc | k, qc , pc , rc , sc P *c (2)

Such an object represents an i -complex linear (complexified quaternionic)

operator, characterized by 16 i -complex parameters. Obviously, we can also

require i-complex linearity for our transformations. In this case the most

general (i-complex linear) transformation which can be performed on com-
plexified quaternions will be characterized by ª onlyº eight i-complex

parameters

qc 1 pc | i (3)

Going back to real quaternions, because of the missing imaginary complex

unit i , we can define only i-complex linear operators

q 1 p | i, q, p P * (4)

characterized by four i-complex parameters. Why this counting of ª complexº

parameters? Why ª complexº geometry?

We showed in previous papers (De Leo and Rodrigues, 1997; De Leo,

1996a, 1997) that the choice of a complex projection of quaternionic inner
products, also called complex geometry (RembielinÂski, 1978), gives the possi-

bility to formulate a consistent quaternionic version of standard (complex)

quantum mechanics. Many difficulties due to the noncommutative nature of

quaternionic multiplication are soon overcome. See, for example, the defini-
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tion of an appropriate momentum operator (De Leo and Rodrigues, 1997).

The choice of a complex geometry implies:

1. The introduction of ª newº anti-Hermitian imaginary units

(1 |
-

h ) ² 5 2 1 |
-

h i -complex geometry

(1 | i) ² 5 2 1 | i i-complex geometry

2. Quadrupling of solutions for complexified quaternions

1, i, j, k i -complex geometry

1, j, i , i j i-complex geometry

and doubling of solutions for real quaternions

1, j i-complex geometry

The previous counting of ª complexº parameters suggests relating barred
operators and quaternionic field to complex matrices and column vectors in

the following way:

Complexified quaternions.

qc 1 pc | i 1 rc | j 1 sc | k % 4 3 4 complex matrices

c0 1
-

h ?
-

c % 1
c0

c1

c2

c3 2
Real quaternions:

q 1 p | i % 2 3 2 complex matrices

z 1 jzÅ % 1 zzÅ 2
This allows one-dimensional complexified quaternionic (De Leo, 1996b)

and two-dimensional real quaternionic (Rotelli, 1989) versions of the Dirac

equation. We also have the necessary tools to perform a set of translation

rules for passing back and forth between standard (complex) and quaternionic

quantum mechanics (De Leo and Rodrigues, 1997; De Leo and Rotelli,
1994, 1996c). Note that when working with complexified quaternions this

is achieved by adopting i -complex geometries. Up to now, the use of i-
complex geometries seemed to be avoided because of the missing complex

parameters in the barred operator structure (3).
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3. QUATERNIONIC DIRAC EQUATION: A BRIEF REVIEW

In this section we briefly recall the formulation of the Dirac equation

by real and complexified quaternions.

3.1. Real Quaternionic Version: The Milestone

Rotelli (1989) derived a quaternionic version of the free-particle Dirac

equation which required for its development the use of the complex scalar

product. He observed that the need to use the complex scalar product no
longer relies solely on arguments relative to tensor product space (multiparti-

cle systems) (Horwitz and Biedenharn, 1984), but is explicit in the single

free-particle wave function.

The first important modification that must be made is the rewriting the

standard Dirac equation

i - t c 5 (
-

a ?
-

p 1 b m) c

where c [ c (x) are 4 3 1 complex matrices, in the form

- t c i 5 (
-

a ?
-

p 1 b m) c

where now c [ c (x) stands for real quaternionic column vectors. The right

position of the imaginary unit i guarantees the norm conservation of c

- t # d t c ² c 5 i # d t c ² H c 2 # d t c ² H c i

since ª * d t c ² H c º is real and hence commutes with i.
The relativistic covariance is obtained by redefining the action of the

momentum operator
-

p as follows:
-

p c [ 2
-

- c i

The Hermiticity of
-

p imposes the choice of the complex scalar product
(Rotelli, 1989).

The g -matrices can be now expressed by 2 3 2 real quaternionic matrices

g 0 5 1 1 0

0 2 1 2 ,
-

g 5
-

h 1 0 1

1 0 2
and the solutions read

E . 0: N 1 1

2
-

h ? -
p /( | E | 1 m) 2 e 2 ipx, N 1 1

-
h ?

-
p /( | E | 1 m) 2 je 2 ipx

E , 0: N 1 2
-

h ?
-

p /( | E | 1 m)

1 2 e 2 ipx, N 1 2
-

h ?
-

p ( | E | 1 m)

1 2 je 2 ipx

where
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N 5 ! | E | 1 m

2

In such a formalism the multiplication by the quaternionic imaginary unit j
gives a spin flip and this implies the desired doubling of solutions in the
quaternionic version of the SchroÈ dinger equation. This is the so-called belated
theoretical discovery of spin (De Leo and Rotelli, 1992). Inspired by Rotelli’s

work, among the many papers based on real quaternionic quantum mechanics

with i-complex geometry we cite the quaternionic versions of the Lagrangian

formalism (De Leo and Rotelli, 1996b), the electroweak model (De Leo and

Rotelli, 1996a), and grand unification theories (De Leo, 1996d).

3.2. Complexified Quaternionic Version: Hope and Disappointment

Various formulations of the Dirac equation on the complexified field

have been considered since the 1930s. A pioneer in this field was certainly

Conway (1937); more recent presentations can be found in Edmonds (1972,

1984) and Gough (1986, 1987, 1989). When written in this manner, a doubling

of solutions from four to eight occurs. The possible physical significance of
these additional solutions has been a matter of speculation (Edmond, 1973).

In a recent article (De Leo, 1996b) it was shown that such a doubling

of solutions is strictly connected with the use of reducible matrices and so there

is no new physics in the quaternionic Dirac equation. Indeed, by following the

standard Dirac approach it is possible to formulate a one-component equation

with only four solutions (De Leo, 1996b). The previous ª unphysicalº doubling
of solutions is overcome by allowing a one-dimensional representation for

the g -matrices by barred complexified quaternionic operators

qc 1 pc | i 1 rc | j 1 sc | k

Nevertheless, we must admit that such a version of the Dirac equation is

neither elegant nor simple. It appears unnatural : complicated spinors struc-
tures, unclear CPT interpretation, etc. We do not have any particular reason

to prefer this version to the complex formulation. The other possibility, to

perform a complexified quaternionic version of the Dirac equation by using

i-complex geometry, appears unlikely, due to the missing complex parameters

within i-complex linear barred operators.

We conclude this section by discussing the possibility to write down a
Dirac equation based on the Clifford algebra Cl3,0. The formulation of Dirac’ s

theory by complexied quaternions implies the possibility to rewrite the Dirac

equation by the Pauli algebra. The matrices
-

s generate the algebra of 2 3 2

matrices with complex numbers as entries M2(#). The matrix algebra M2(#)
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Table II

M2(#) *c

11 1

s 1, s 2, s 3 i i, i j, i k
s 3 s 2, s 1 s 3, s 2 s 1 i, j, k

s 1 s 2 s 3 i

has the basis over 5 shown in Table II, which also gives the corresponding

basis of the complexified quaternionic algebra.

By translation from our complexified quaternionic version we can obtain

a formulation of the Dirac equation by M2(#). We identify the spinor fields
by 2 3 2 complex matrices and obtain the needed complex degree of freedom.

The most general transformation on the 4-dimensional complex vector column

1
c 1

c 2

c 3

c 4 2 (5)

is obviously performed by 4 3 4 matrices, 16 complex parameters. By

rewriting the previous 4-dimensioal vector column by a 2 3 2 complex matrix

1 c a c b

c c c d 2 , c a 5 c 1 2 i c 4,

c b 5 2 c 3 1 i c 2, (6)

c c 5 c 3 2 i c 2,

c d 5 c 1 1 i c 4

we find again 16 complex parameters within the most general transformation

on our ª newº spinors. Indeed, by allowing left/right action for the Pauli

matrices, we have

M0 1 M1 | s 1 1 M2 | s 2 1 M3 | s 3

where M0,1,2,3 are 2 3 2 complex matrices, and so we restore the 16 complex

parameters characterizing the standard action on spinor fields.

4. QUATERNIONIC DIRAC EQUATION: ITS NATURAL
FORMULATION

Let us work within complexified quaternionic quantum mechanic with

i-complex geometry. In finding the representation of gamma matrices satis-
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fying the Dirac algebra, we have no problems with the
-

g -matrices, in fact

we immediately find as suitable choice
-

g 5
-

h [ (i, j, k), {h m, h n} 5 2g mn (m, n 5 1,2,3),
-

h ² 5 2
-

h

Nevertheless, we cannot find a quaternionic number which anticommutes

with
-

h , and consequently we cannot give a (complexified) quaternionic repre-
sentation for the g 0-matrix. Working in complexified quaternionic QM with

i -complex geometry, the problem is overcome by using two different barred

quaternionic imaginary units in representing g 0 and
-

g . Explicitly

g 0 5 i | i and
-

g 5 i
-

h | j

Working with i-complex geometry, we have only the barred imaginary unit

1 | i, and so this possibility is avoided.

However, we can have recourse to a ª trick.º The action of the standard

g 0-matrix (Itzykson and Zuber, 1985) on the complex spinor c P C 1 is

g 0 c 5 1
1 0 0 0

0 1 0 0

0 0 2 1 0

0 0 0 2 1 2 1
c 1

c 2

c 3

c 4 2 5 1
c 1

c 2

2 c 3

2 c 4 2
In terms of complexified quaternions we have to find an operation which
performs the following transformation:

C [ c 1 1 j c 2 1 i ( c 3 1 j c 4) ® c 1 1 j c 2 2 i ( c 3 1 j c 4)

The solution is now obvious. The required operation is the x-involution, C ®
C x. Finally, the Dirac equation

( - t 1 g 0 -
g ?

-
- ) C (x) i 5 m g 0 C (x)

reads

( - t 1 i
-

h ?
-

- ) C (x) i 5 m C x(x) (7)

Equation (7) can be concisely rewritten in the following way:

D C (x) 5 m C x(x) (8)

where

D [ ( - t 1 i
-

h ?
-

- ) | i

We can immediately check if this equation reduces to the Klein±Gordon

equation. We multiply equation (8) on the left by the barred operator

Dx [ ( - t 2 i
-

h ?
-

- ) | i

obtaining
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D xD C (x) 5 2 ( - 2
t 2

-
- 2) C (x) 5 mD x C x(x) (9)

Note that the x involution changes the Dirac equation as follows:

D C (x) 5 m C x(x) ® D x C x(x) 5 m C (x)

so equation (9) gives the required Klein±Gordon equation

( - m - m 1 m 2) C (x) 5 0

If C (x) , e 2 ipx, we obtain then from the Dirac equation the usual Einstein

energy-momentum relation

E 2 5 m 2 1
-

p 2

It is obvious from the previous discussion that it is not important to pick a

particular set of quaternionic imaginary units, since the solutions to the Dirac

equation are completely specified by the anticommutation relations in
-

h .
However, explicit representations can sometimes be helpful in making calcu-

lations. In the following we shall use
-

h [ (i, j, k).

In terms of i-complex functions which characterize our Dirac spinor

C 5 c 1 1 j c 2 1 i ( c 3 1 j c 4)

the Dirac equation can be rewritten as four i-complex equations. Instead of

solving these four coupled equations directly, let us try solutions in which

all four i-complex function components from c 1 to c 4 share a common

exponential factor similar to the Klein±Gordon plane wave function

C 5 c -p e 2 ipx

Inserting this function into equation (7), we obtain

(E 2 i
-

h ?
-

p ) c -
p 5 m c x-p (10)

Let us first solve this equation in the rest frame of the particle, in which

equation (10) reduces to

E c -
0 5 m c x-

0

If we pose

c -
p 5 u -p 1 v -p

where

u -p P * and v -p P i *

we find the following solutions to the previous equation:
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u
(1)
-

0 , 1, u
(2)
-

0 , j (E 5 m); v
(1)
-

0 , i , v
(2)
-

0 , i j (E 5 2 m)

Each one of the spinors u -
0 and v -

0 has two independent solutions. Analogous

to the interpretation of the two-component Pauli spinors, the two independent

solutions for each one of the spinors will be interpreted as the two spin states
of a spin-1/2 particle.

For the general case in which the particle is in motion the solutions to

the Dirac equation are obtained as follows:

( - l 1 i
-

h ?
-

- ) (u -p 1 v -p )e 2 ipxi 5 m (u -p 2 v -p )e 2 ipx

and so

(E 2 i
-

h ?
-

p )(u -p 1 v -p ) 5 m (u -p 2 v -p )

From the two coupled equations

Eu -p 2 i
-

h ?
-

pv -p 5 mu -p

Ev -p 2 i
-

h ?
-

pu -p 5 2 mv -p

we immediately find the desired complexified quaternionic solutions to the
Dirac equation:

! | E | 1 m

2
3 1

1 1
i

-
h ?

-
p

| E | 1 m
, 1 1 1

i
-

h ?
-

p

| E | 1 m 2 j, E . 0

1 1 2
i

-
h ?

-
p

| E | 1 m 2 i , 1 1 2
i

-
h ?

-
p

| E | 1 m 2 i j, E , 0

The normalization is chosen so that

( c ²
-

p c x-
p )E . 0 5 ( c *-p c -

p )E . 0 5 m

( c ²
-p c x-p )E , 0 5 ( c *-p c -p )E , 0 5 2 m

or equivalently

( c ²
-p c -p )(1, i) 5 | E |

The orthogonality of our solutions is guaranteed by the i-complex projection

of inner products.

4.1. SchroÈ dinger± Pauli Equation

Let us determine how our complexified quaternionic Dirac equation

reduces to the SchroÈ dinger±Pauli equation of the electron. We consider the

case of an electron in the presence of a time-independent electromagnetic field.

Under the assumption of ª minimal electromagnetic couplingº we replace
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- m | i ® - m | i 2 eA m

in the Dirac equation to obtain

( - t | i 1 g 0 -
g ?

-
- | i 2 e g 0 A0 1 e g 0 -

g ?
-

A ) C (x) 5 m g 0 C (x)

or equivalently

[ - t | i 1 i
-

h ? (
-

- | i 1 e
-

A )] C (x) 5 (m 1 eA0) C x(x)

In the following we shall use
-

p to indicate the momentum operator. The

Dirac equation reads

[E 2 i
-

h ? (
-

p 2 e
-

A )] C (x) 5 (m 1 eA0) C x(x)

From the previous equation we can write down two coupled equations

(E 2 m 2 eA0) u -p 5 i
-

h ? (
-

p 2 e
-

A )v -p ,

(E 1 m 1 eA0) v -p 5 i
-

h ? (
-

p 2 e
-

A )u -p .

For E 5 | E | , we find

( | E | 2 m 2 eA0)u -p 5
[ i

-
h ? (

-
p 2 e

-
A )]2

| E | 1 m 1 eA0

u -p .

Now, noting that

- x (Ayu -p ) 2 Ay - xu -p 5 ( - xAy)u -p

we find, for | E | , m and A0 , , m,

( | E | 2 m)u -p , F eA0 1
1

2m
(

-
p 2 e

-
A )2 2

e

2m
i

-
h ?

-
B G u -p

We recognize the ª Hamiltonian associated with the kinetic energy | E | 2 m
of the electronº characterizing the SchroÈ dinger±Pauli equation.

We conclude this section with some considerations about the SchroÈ d-

inger equation

- t C i 5 ?
-

p 2

2m
C

Such an equation assumes the same form both in complex and real/complexi-

fied quaternionic quantum mechanics. Nevertheless, in the complex world it
has only one (complex) solution, in the real quaternionic world two (complex

orthogonal) solutions, and this suggests their possible identification with the

two spin states: up and down. Finally in the complexified quaternionic world

we find the ª fullº solution, spin-up/down and particle/antiparticle solution.
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4.2. Relativistic Covariance

Before we follow the standard approach to the relativistic covariance
of the Dirac equation, let us briefly analyze the complexified quaternionic

Lorentz transformations. We can identify, using standard ideas of affine

geometry, the coordinates of events of Minkowski space-time as the four-

vector (t,
-
x ), by which it can be represented by the complexified quaternion

x 5 t 1 i
-

h ?
-

x

The Lorentz square of the complex quaternionic position is then

x x x 5 (t 2 i
-

h ?
-
x ) (t 1 i

-
h ?

-
x ) 5 t 2 2

-
x 2

which represents the translation by complexified quaternions of the stan-

dard invariant

x m x m 5 g m n x
n x m 5 t 2 2

-
x 2

thanks to the identifications

x m % x , x m % x x

The Lorentz transformations are concisely described by

x 8 5 L x L ² , L * L 5 1, L P *c.

Let us introduce the operator

$ [ - t 2 i
-

h ?
-

- (11)

which represents the quaternionic counterpart of

- m [ ( - t , 2
-

- )

and which transforms like x

$8 5 L $ L ²

In order to obtain the relativistic covariance of the Dirac equation we must

assume that, under Lorentz transformations, x ® x 8, there is a linear relation

between the wave function C in the first frame and the wave function C 8
in the transformed frame, namely

C 8 5 7( L ) C (12)

Both the wave functions C and C 8 must satisfy the Dirac equation:

D C 5 m C x, $8 C 8 5 m C 8x

which in terms of the operator $ become
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$x C i 5 m C x, $8x C 8i 5 m C 8x

Note that

D [ $x | i

By observing that under Lorentz transformations the $x-operator transforms as

$8x 5 L x$x L *

we find for the ª transformedº Dirac equation

$8 C 8 5 L x$x L *7( L ) C i 5 m (7( L ) C )x 5 m C 8

After simple algebraic manipulation we obtain

7( L ) 5 L (13)

A finite transformation is of the form

exp(
-

h ?
-

c ),
-

c P #(1, i )

For spatial rotation, 7 is unitary (generators
-

h ), whereas it is Hermitian for
Lorentz boosts (generators i

-
h ). It is immediate to observe that C C ² transforms

as the four-dimensional vector x ,

C 8 C 8 ² 5 L C C ² L ² (14)

whereas C * C transforms like a scalar

C 8* C 8 5 C * L * L C 5 C * C (15)

An explicit calculation for the Dirac spinors gives

C -
p C ²

-p 5 | E | 6 i
-

h ?
-

p

C *-p C -
p 5 6 m

We will show in the next section that the parity operation is expressed by

the x-involution, so we observe that the multiplication by i transform scalars

and vectors into pseudoscalars and pseudovectors:

C * C scalar

C C ² vector

i C * C pseudoscalar

i C C ² pseudovector

4.3. Spin Operator

We conclude this section by giving the explicit form of the spin operator.

We know that the spin operator is related to space rotations; thus by consider-
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ing an infinitesimal rotation around x and finding the corresponding transfor-

mation of the wave function C , we obtain

6x 5 2
i | i
2

(16)

Thus, the four solutions u 1,2
p correspond to positive-energy solutions with

6 5 1/2, and for
-

p [ ( px , 0, 0) to 6x 5 1/2, 2 1/2, 1/2, 2 1/2 respectively.

Our polarization direction is the x axis because the imaginary unit i has been

associated with px.

5. CPT OPERATION

In this section we discuss the CPT operation. We will show that in the

complexified quaternionic world it assumes a simple form and represents a

mapping of our spinors C in their dual space. In order to simply the mathemati-

cal language, we shall use the following notation:

C [ C (x)

C P [ C 8( 2
-
x , t)

C C [ C C(x)

C T [ C 8(
-

x , 2 t)

5.1. Parity

We start from the complexified quaternionic Dirac equation

( - t 1 i
-

h ?
-

- ) C i 5 m C x

and we perform the required coordinate transformation (space inversion)

-
x ® 2

-
x

We obtain the transformed Dirac equation:

( - t 2 i
-

h ?
-

- ) C Pi 5 m C x
P (17)

In our formalism it is now very easy to find the relation between the trans-

formed wave function C P , and the wave function in the first frame, C . The

x-involution modifies the Dirac equation as follows:

( - t 2 i
-

h ?
-

- ) C xi 5 m C

and so by comparison of this equation with equation (17), we immediately find
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C P [ C x

As anticipated in the previous section, the parity operation is expressed by

the x-involution.

5.2. Charge Conjugation

To discuss charge conjugation, we introduce the potential (A 0,
-

A ) by
performing the following change in our Dirac equation:

- t | i ® - t | i 1 eA0

-
- | i ®

-
- | i 2 e

-
A

The ª modifiedº Dirac equation now reads

[ - t | i 1 eA0 1 i
-

h ? (
-

- | i 2 e
-

A )] C 5 m C x

The charge conjugation requires the change e ® 2 e,

[ - t | i 2 eA0 1 i
-

h ? (
-

- | i 1 e
-

A )] C C 5 m C x
C

By multiplying the Dirac equation by i

[ - t | i 1 eA0 1 i
-

h ? (
-

- | i 2 e
-

A )]( i C ) 5 2 m ( i C )x

and by j on the right, we find

[ 2 - t | i 1 eA0 1 i
-

h ? ( 2
-

- | i 2 e
-

A )]( i C j ) 5 2 m ( i C j x)

The last equation when rewritten as

[ - t | i 2 eA0 1 i
-

h ? (
-

- | i 1 e
-

A )]( i C j ) 5 m ( i C j x)

and confronted with (18) gives

C C [ i C j

Thus, the charge conjugation is expressed in the complexified quaternionic
formalism, by the multiplication by imaginary units i (mapping in the dual

space) and j (spin flip).

5.3. Time Reversal

By noting that the time reversal requires

A 0 ª A 0,
-

A ª 2
-

A ,

we have

[ 2 - t | i 1 eA0 1 i
-

h ? (
-

- | i 1 e
-

A )] C T 5 m C x
T (19)

Let us multiply, from the right the Dirac equation by j
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[ 2 - t | i 1 eA0 1 i
-

h ? ( 2
-

- | i 2 e
-

A )] ( C j ) 5 m ( C j )x

The x-involution modifies the previous equation as follows:

[ 2 - t | i 1 eA0 1 i
-

h ? (
-

- | i 1 e
-

A )] ( C j )x 5 m ( C j )

By comparing with (19), we find

C T [ C xj

It is now immediate to obtain the ª fullº CPT operation

C CPT(x8) [ i C (x)e i f

We conclude this section with some considerations about the geometric

interpretation of the complexified quaternionic imaginary units. The pure
quaternionic imaginary units

-
h represent the generators of the space rotations,

the complexified quaternionic products i
-

h are related to the boost generators,

and finally the pure complex imaginary unit i gives rotations in the plane

individuated by C and its dual image i C .

6. CONCLUSIONS

We conclude this paper by showing a surprising possibility of translation

between standard (complex) quantum mechanics and complexified quaterni-

onic QM with i -complex geometry.

We begin by recalling the ª symplecticº quaternionic representation of

a complexified quaternionic (state) qc

qc 5 q1 1 i q2 q1,2 P *.

by the quaternionic column vector

qc % 1 q1

q2 2
We now identify the operator representation of i consistent with the above

identification:

i % 1 0 2 1

1 0 2
In order to obtain a translation between 2 3 2 real quaternionic (barred)

matrices

1 q1 1 q2 | i p1 1 p2 | i

r1 1 r2 | i s1 1 s2 | i 2
and barred complexified quaternions
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qc 1 pc | i

we need to obtain the complexified quaternionic counterpart of

1 1 0

0 2 1 2
This is soon achieved by the x-involution. Thus, we have the following set

of rules for the required translation:

1 % 1 1 0

0 1 2 , i % 1 0 2 1

1 0 2 , x-inv % 1 1 0

0 2 1 2 ,

i 3 x-inv % 1 0 1

1 0 2
The basis is

1, 1 | i,
-

h ,
-

h | i

and so we restore the needed 32 real parameters. Since 2 3 2 real quaternionic
(barred) matrices are related to 4 3 4 complex matrices (De Leo and Rotelli,

1994, 1996c), we can immediately obtain the translation between four-dimen-

sional complex matrices and one-dimensional complexified operators.

In conclusion, we have completed our previous work on the possibility

to formulate a consistent quantum mechanics by noncommutative fields (De

Leo and Rodrigues, 1997) by discussing the main features of a complexified
quaternionic approach based on i -complex geometry. We hope that the com-

plexified quaternionic Dirac equation elaborated in this paper and the transla-

tion given in this section demonstrate the possible potentialities in the use

of noncommutative numerical fields (and in particular complexified quaterni-

ons) in formulating physical theories.
Nevertheless, we wish to insist upon the noncomplete nature of the

translation and hence the nontriviality of the choice to adopt complexified

quaternions as underlying numerical field. Many geometric interpretations

hidden in the ª complex worldº can be pointed out by the complexified

quaternionic algebra (De Leo and Rodrigues, n.d.).
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